
Master of Computer Applications
(MCA)

Database Management System Lab
(DMCACO108P24)

Self-Learning Material
(SEM 1)

Jaipur National University

Centre for Distance and Online Education

__

Established by Government of Rajasthan

Approved by UGC under Sec 2(f) of UGC ACT 1956

&

NAAC A+ Accredited

PREFACE

In this guide, we will explore the fundamental concepts, principles, and best practices for

effectively managing databases. Whether you are new to database management or looking to

enhance your existing skills, this resource will provide valuable insights and guidance to help

you successfully navigate the complex world of data storage and organization.

Databases are essential components of many applications and systems, and their proper

design and management are crucial for ensuring efficiency, data integrity, and scalability.

Through this preface, we invite you to embark on a journey of discovery and exploration into

the world of databases.

By understanding the importance of database management, you will be equipped to make

informed decisions, optimize database performance, ensure data integrity, and promote

efficient data retrieval and analysis. Through this preface, we invite you to embark on a

journey of discovery and mastery of database management principles that will empower you

to harness the full potential of your data assets.

TABLE OF CONTENTS

Sr.

No.

Topic Page No.

1. Install Oracle RDBMS and create a Database. 1-2

2. Familiarize yourself with Oracle SQL Developer or another

Oracle-compatible SQL client.

2-3

3. Create a schema for a university, including tables for students,

courses, and instructors.

3-4

4. Write SQL queries to insert data in to the tables you created. 4

5. Write a query to retrieve very students from the student table. 5

6. Create a database called "College" with two tables named

"Students" and "Courses". Then, insert sample data into these

tables and perform a simple join operation to retrieve student

names along with the courses they are enrolled in.

5-6

7. Write a query to find the courses by the highest and lowest

number of registered students.

6-7

8. Write a query to retrieve the average GPA of students in each

course.

7

9. Write a query to update a student GPA. 7-8

10. Write a query to update a course's credit hours. 8

11. Write a query to delete a student from the student table. 8

12. Write a query to drop the course registration table 8

13. Create a table for storing student addresses. 8-9

14. Write SQL queries to insert Data in to the student addresses table. 9

15. Write a query to retrieve a specific student's address by their

student ID.

9

16. Write a query to delete a student's address as of the student

addresses table.

9

17. Create a table for storing instructor's office hours. 9

18. Write SQL queries to add data into the instruct or office hours

table.

10

19. Write a query to retrieve all instruct or office hours 10

20. Write a query to retrieve a specific instructor's office hours by

their employee ID

10

21. Write a query to update an instructor's office hours 10

22. Write a query to delete an instructor's office hours from the

instructor office hours table.

10

23. Create a table for storing course prerequisites. 10-11

24. Consider a table named '\Employees' with the following columns:

employee _id, first_ name, last_name, age, department, and

salary. Write a”SQL query” to display the first name, last name,

and salary of all employees working within the 'Finance'

department.

11

25. Consider a table named 'Students' by the follow columns:

student_id, first_name, last_name, age, grade, and course_id.

Write a SQL query to compute the average age of students in

grade 10.

11

26.
Consider two tables named 'Orders’ and 'Order_items'. The

'orders' table has the columns order_id, , and order_date,

customer_id. The 'order_items' table has the column order_id,

product_id, quantity, with price. Write a “SQL query” to find the

total revenue generated on a specific date (e.g., '2023-03-31').

11

27. Consider a table name 'products' by the following columns:

product_id,product_name, category, and price. write down a SQL

query to display the three most expensive products in each

category

11-12

28. Consider a table name 'customers' by the next columns:

customer_id,first_name, last_name, Email, and Phone. Write

down a SQL query to update the phone numbers of customers

with the lastname 'Smith' by adding a '+1' prefix.

12

29. Consider a table name 'books' with the next columns: book_id,

title, author,genre, in addition to publication_year. Write down a

SQL query to count the number of books published in each genre

after 2010.

12

30. Consider two tables name 'authors' and 'books'. The 'authors' table

have the columns author_id, first_name, and last_name. The

'books' table has the columns book_id,title, author_id, and

publication_year. Write down a SQL query to display the list of

authors who have published at least three books.

12

31. Consider a table name 'inventory' by the following columns:

product_id,product_name, quantity, and price. Write down a

“SQL query” to display the total value of the

inventory(quantity*price)for each product with a value greater

than 1000.

12-13

32. Consider a table name 'events' with the following columns:

event_id, event_name,start_date, end_date, and venue. Write

down a SQL query to display the events scheduled to occur

between '2023-04-02' and '2023-04-30', sorted by start date.

13

33. Consider a table named 'users' with the following columns:

user_Id, username, email,and registration_dAte. Write a SQL

query to delete all users who registered more than two years

ago(assuming the current date is '2023-03-31').

13

34. Consider a table name 'sales’ with the following columns: sale_id,

product_id,sale_date, and quantity. Write down a “SQL query” to

display total number of sales foreverymonthin2022.

13

35. Consider two tables name 'students' and 'enrollments'. The

'students' table has thecolumns student_id, first_name, and

13

last_name

36. Consider a table name 'orders' with the following columns:

order_id, customer_id,order_date, and total_amount. Write down

a “SQL query” to find the total revenue generatedper

monthin2022..

13-14

37. Consider a table name 'employees' by the following columns:

employee_id,first_name, last_name, hire_date, and salary. Write

down a SQL query to display the employees hired with in the last

6 months (assuming the current date is '2023-03-31').

14

38. Consider a table name 'cities' with the following columns: city_id,

city_name,country, and population. Write down a SQL query to

display the top 5 most populous cities in ascending order.

14

39. Consider a table name 'employees'wIth the following columns:

employee_id,first_name, last_name, department, and salary.

Write down a SQL query to find the employees with the highest

salary in each department.

14-15

40. Consider two tables named 'students' and 'courses'. 15

41. Write a query to locate the courses offered in a specific semester. 15

42. Write a query to find the instructors teaching a specific course 15-16

43. Write a query to locate the students by the highest GPA in a

specific course.

16

44. Write a query to find courses by means of no registered students 16

45. Write a Query to locate the top 4 students with the highest GPA. 16

46. Write a query to find the Top 5 courses with the maximum

average GPA

16

47. Write a query to find the Top 5 instructors with the Highest average

student GPA
17

48. Create a view to displays the student ID, name, and total credit

hours of the courses they are registered for

17

49. Create a view to displays the instructor ID, name, and total credit

hours of the courses they are teaching

17

50. Create a stored procedure to enroll a student in a course 18

51. Create a store procedure to drop a course used for a student. 18

52. Create a store procedure to add a fresh course to the course table. 18-19

53. Create a store procedure to delete a course from the course table 19

54. Create a store procedure to add a new instructor to the instructor

table

19

55. Create a stored procedure to delete an instructor from the

instructor table.

19

56. Create a store procedure to revise a student's GPA. 20

57. Create a store procedure to bring up to date a course's credit hours 20

58.
Create a stored procedure to up date an instructor's office hours.

21

59. Create a function to compute the average GPA of students in a

specific course.

21

60. Create a function to compute the total credit hours earned by a

specific student..

22

61. Create a function to calculate the total credit hours taught by a

specific instructor.

22-23

62. Create a trigger to update the total credit hours earned by a

student when they enroll or drop a course

23-24

63. Create a trigger to update the total credit hours earned by a

student when they enroll or drop a course

24

64. Create a table for storing user login logs. 24

65. Write SQL queries to add data into the user login logs 24

66. Write a query to retrieve a specific user's login logs By their user

ID

24

67. Write a query to delete a specific user's login logs from the user

login log stable

25

68. Create An Index on the student table to improve query

performance.

25

69. Create an Index on the course table to improve query

performance.

25

70. Analyze the performance of aspecific query using the Oracle

Explain Plan feature.

25

71. Use SQL subqueries to find students who are registered for the

same course as a specific student

25

72. Use SQL subqueries to find instructors who have taught the same

course as a specific instructor.

26

73. Write a query to implement pagination for a large result set, such

as a list of all students.

26

74. Write aquery to implement full-text search for student names or

course titles

26

75. Use SQL transactions to ensure data integrity when enrolling

students in courses or updating their GPA.

26-27

76. Optimize a slow-running query using indexes, subqueries, or

other query optimization techniques.

27-28

77. Use SQL join store cover a list of students and the course they are

registered for

28

78. Use SQL join store cover a record of instructors and the course

they are teaching.

28

79. Use SQL join store cover a list of courses and their prerequisites 28

80. Write down a SQL query to create a normalized schema for an

online store, including tables for customers, products, orders, and

order items. Ensure each table has appropriate primary and

foreign keys.

28-29

81. Write down a “SQL query “ to create an index On the product

name in the "Products" table, assuming the product name column

is called "product_name

29

82. Write a “SQL query” to find the top 3 Best-selling products in the 29

online store, based on the total quantity sold.

83. Write a “SQL query” to find the total revenue generate by the

online store for a given date range, using the "Orders" and

"Order_ Items" tables.

30

84. Create a store procedure to insert a new customer record into the

"Customers" table, checking for duplicate email addresses and

returning an appropriate error message if a duplicate is found

30-31

85. Create a store procedure to update the stock level meant for a

product in the "Products" table, considering the stock level should

not be less than zero.

31-32

86. Write a SQL query to implement a transaction that inserts a new

order and its associated order items into the "Orders" and

"Order_Items" tables, ensuring dataconsistency.

31-32

87. Write a SQL query to Create a view that displays the whole

revenue generated by each customer.

32

88. Implement a trigger that automatically calculates and update the

total price of an order in the "Orders" table when a new record is

inserted into the "Order Items"table.

33

89. Write a SQL query to create a schema for a many-to-many

relationship among students and courses, using a junction table

for enrollments.

33

90. Write a SQL query to uncover the average grade of all students in

a specific course, using the "Students", "Courses", and"

Enrollments" tables.

34

91. Write down a SQL query to identify clients who have placed

more than 5 orders in the online store, using the "Customers" and

"Orders" tables.

34

92. Write a SQL query to find the products that have not been ordered

in the last 30 days, using the "Products", "Orders", and "Order_

Items" tables.

34

93. Implement a trigger that checks the stock point of a product

before inserting a new record into the "Order_Items" table. If the

stock level is insufficient, cancel the insertion and return an error

message.

34

94. Create a stored procedure to calculate and update the total price of

an order after adding, updating, or deleting an order item.

35

95. Write a SQL query to Create an index on the "Orders" table to

optimize the search for orders placed within a specific date range.

35

96. Write a “SQL query” to find the total number of enrollments for

each course, sorted by the number of enrollments in descending

order.

35

97. Create a view to displays the number of products sold in each

product category, using the "Products" and "Order_Items "tables.

36

98. Implement a Foreign key constraint on the "Enrollments" table to

ensure that a record can only be added if the corresponding

student and course IDs exist in the "Students" and "Courses"

tables.

37

99. Write a SQL query to identify the top three customers who have

spent the most money on top of the online store, based on the total

price of their orders.

37

100. Write down a SQL query to find the students who have taken at

least 1 course from each department, using the "Students",

"Courses", "Enrollments", and "Departments" tables. Assume

there is a "department_id" column in both the "Courses" and

"Departments" tables.

37-38

1 | Page

1. Install OracleRDBMSand create a Database.

Installing “Oracle RDBMS” and creating a Database is a multi-step process that can be broken

down into the following steps:

● Download Oracle Database Software: Go to the Oracle Database download

page(https://www.oracle.com/database/technologies/) and choose the version you want

to install (e.g., Oracle Database 19c). Download the proper installer for your operating

system (Linux, Windows,ormacOS).

● Install the Oracle Database Software: Follow the setting up steps specific to your

Operating system. For detailed instructions, consult Database of Oracle

InstallationGuide (https://docs.oracle.com/en/database/oracle/oracle-

database/index.html) for your chosen version and operating system.

● create an Oracle Database: After installing “Oracle Database” software, you can createa

“Database using the Database Configuration Assistant” (DBCA). Follow these steps:

a. Open the database Configuration Assistant:

● On Windows, click "Start," search for "Database Configuration Assistant" and click

on it.

● On Linux, open a terminal and enter dbca to launch the Database

ConfigurationAssistant.

b. Choose"Create a Database" and click "Next."

 Choose the appropriate template for your database (e.g., General Purpose or

TransactionProcessing) and click"Next."

Enter a Global Database Name and System Identifier “SID” for your database. The

GlobalDatabase Name should be in the format "database_name.domain_name"

(e.g.,"mydb.example.com"). The SID is a unique identifier for your database instance.

Click"Next."

c. Choose the storage options for your database, such as file system or Automatic

StorageManagement (ASM).Click"Next."

d.Set the memory allocation for your database by choosing either automatic or custom

memory management. Click "Next."

e. Choosetheappropriatecharactersetforyourdatabaseandclick"Next."

f. Configure security settings for your database, such as enabling Transparent

DataEncryption(TDE)andsettingapasswordfortheSYSandSYSTEMaccounts.Click"Next."

g. C

onfigure the management options for your database, such as enabling Oracle

EnterpriseManagerDatabaseExpress and setting a password for the DBSNMP account.

Click "Next."

http://www.oracle.com/database/technologies/)
http://www.oracle.com/database/technologies/)

2 | Page

h. R

eview the summary of your database configuration and click "Finish" to create the

database.

● join to the Oracle Database: Use SQL*Plus, SQL Developer, or another database

management tool on the way to connect to your newly created Oracle Database using the

connection details (SID, username, and password) you provided during the database

creation process.

Now you have installed Oracle RDBMS and created a database. You can start creating

tables,inserting data, and querying the database as needed

2. Familiarize yourself with Oracle SQL Developer or another Oracle-compatible

SQLclient.

“Oracle SQL” Developer is a popular, free “Integrated Development Environment” (IDE) that

simplify working with Oracle databases. It provides a powerful and intuitive interface

formanagingdatabaseobjects, running “SQLqueries” ,and developing “PL/SQL code”.

Here's how to get started with “OracleSQLDeveloper “:

1. Download “Oracle SQL” Developer: Go to the Oracle SQL Developer download

page(https://www.oracle.com/tools/downloads/sqldev-downloads.html) and download

the appropriate version for your operating system(Windows,macOS,or Linux).

2. Installing Oracle SQL Developer: Follow the installation instruction for your operating

system provided in the Oracle SQL Developer

documentation(https://docs.oracle.com/en/database/oracle/sql-developer/index.html).

3. Launch Oracle SQL Developer: Start Oracle SQL Developer by running the

executable file (sqldeveloper.exe on Windows or sqldeveloper.sh on Linux/macOS)

located in the installation folder.

4. Create a Database Connection: To connect to your Oracle Database, you need to setup

a fresh database connection. Click the "+" icon within the "Connections" tab in the left

pane to open the "NewConnection" dialog.

Fill in the required details, such as:

● ConnectionName:A Unique Name For The Connection.

● Username: The database user account (e.g., SYSTEM or another user account you've

created).

● Password:The Password For The User Account.

http://www.oracle.com/tools/downloads/sqldev-downloads.html)
http://www.oracle.com/tools/downloads/sqldev-downloads.html)

3 | Page

● Hostname:Thehostnameor “IPaddress”oftheserver hostyourOracleDatabase.

● Port :Thelistenerportfor your OracleDatabase(default is1521).

● SID or Service Name:The SID or Service Name of your Oracle Database.

Click "Test" to ensure the connection settings are correct, then click "Connect" to establish a

connection to the database.

5. Explore Oracle SQL Developer Features: With Oracle SQL Developer, you can

manage your database, develop and debug PL/SQL code, run SQL queries, and

more.Familiarizeyourself with the following features:

● SQL Worksheet: Write, execute, and save SQL queries, PL/SQL code, and

scripts.Access it by right-clicking a connection and selecting "Open SQL

Worksheet" or clicking the"SQLWorksheet"button toolbar.

● Object Browser: Explore and manage database objects (tables, indexes, views,

etc.)in the "Connections" tab. You can create, edit, and delete objects by right-

clicking selecting the appropriate options.

● Data Import and Export: Import data from external files (CSV, Excel, XML, etc.)

or export data from tables and views to various file formats. Access these options

byright-clickingatableorviewandselecting"ImportData" or"ExportData."

● PL/SQL Debugging: Debug PL/SQL code by setting breakpoints, stepping

through code, and examining variable values. Open a PL/SQL object (procedure,

function,package, etc.) in the editor, set breakpoints, and click the "Debug" button

on the toolbar to start a debugging session.

3. Create a schema for a university, including tables for students, courses, and

instructors.

-- Creating table for studentsCREATETABLEstudents(

Student_id NUMBER PRIMARY KEY,

First_nameVARCHAR2(50),Last_name VARCHAR2(50),Birth_dateDATE,

majorVARCHAR2(50)

);

-- Creating table for coursesCREATE TABLE courses (

4 | Page

course_id NUMBER PRIMARY KEY,course_name VARCHAR2(100),

course_description VARCHAR2(1000), instructor_id NUMBER);

-- Creating table for instructors CREATE TABLE instructors (instructor_id NUMBER

PRIMARY KEY, first_name VARCHAR2(50), last_name VARCHAR2(50),

department VARCHAR2(50)

);

-- Add foreign key constraint on courses referencing instructorsALTERTABLE

courses

ADDCONSTRAINTfk_instructorFOREIGN KEY

(instructor_id)REFERENCESinstructors(instructor_id);

4. Write SQL queries insert data into the tables created.

--Inserting data into instructors table

INSERT INTO instructors (instructor_id, first_name, last_name,

department)VALUES(1, 'John','Doe','Computer Science');

--Inserting data into student table

INSERT INTO students (student_id, first_name, last_name, birth_date,

major)VALUES(1,'Jane','Smith',TO_DATE('1998-05-17','YYYY-MM-

DD'),'Computer

Science');

--Inserting data into courses table

5 | Page

5. Writea query to retrieve every students from the student table.

SELECT*FROMstudents;

Output:

STUDENT_ID|FIRST_NAME|LAST_NAME| BIRTH_DATE|MAJOR

1 |Jane | Smith | 17-MAY-98| Computer Science

6. Create a database called "College" with two tables named "Students" and

"Courses".Then, insert sample data into these tables and perform a simple

join operation to retrieve student names along with the courses they are

enrolled in.

● Creating the"College" database:

CREATEDATABASECollege;

● createthe"Students"table:

USE College;

CREATE TABLE Students

(Student_idINTPRIMAR

YKEY,

student_Name VARCHAR(50)

NOT NULL,Course_idINT

);

● Createthe"Courses"table:

CREATE TABLE

Courses

(Course_idINTPRI

MARYKEY,

course_name VARCHAR(50) NOTNULL

);

● Insert sample data into the "Students" table:

INSERT INTO students (student_id, student_name,

Course_id)VALUES (1, 'Alice',101),

(2, 'Bob',102),

6 | Page

(3,'Charlie',101);

● insert sample data into the "Courses"table:INSERT INTO Courses (course_id,

course_name)VALUES(101, 'Mathematics'),

(102,'Physics');

● Performing a simple join operation to retrieve student names all along with the

coursestheyareenrolledin:

SELECT student_nameand

course_nameFROMStudents

JOINCoursesONStudents.Course_id withCourses.course_id;

7. Write a query to find the courses by the highest and lowest number of registered

students.

WITH Course Counts AS(

SELECT Course_id, COUNT(student_id) AS

num_students

FROM Students

GROUPBYCourse_id

)

, MinMaxCountsAS(

SELECT MIN(num_students) AS min_students, MAX(num_students) AS

max_students FROM Course Counts

)

SELECT Courses.course_id, Courses.course_name,

CourseCounts.num_students FROM Courses

JOIN CourseCounts ON Courses.course_id=CourseCounts.course_id

JOIN MinMaxCounts ON CourseCounts.num_students =

MinMaxCounts.min_students OR

CourseCounts.num_students=MinMaxCounts.max_students;

This Query Consists Of Three Parts:

7 | Page

1. The CourseCounts Common Table Expression (CTE) calculate the number of

registered student for each course by grouping the Students table by course_id and

counting the student_ids.

2. The MinMaxCounts CTE finds the minimum and maximum number of

registered students among all courses by selecting the MIN and MAX of the

num_students column from the Course Counts CTE.

3. The key query joins the Courses, CourseCounts, and MinMaxCounts tables to

find and display the course ID, course name, and amount of registered students for

thecourses withthehighestandlowestnumberofregisteredstudents.

8. Write a querytoretrievetheaverageGPAofstudentsineach course.

SELECT Courses.course_id, Courses.course_name, AVG(Students.GPA) AS

average_gpa FROM Students

JOIN Courses ON Students.course_id with Courses.course_id

GROUPBY Courses.course_id,Courses.course_name;

This query performs the following operations:

1. join the Students and Course stables on the course_id column.

2. group the joined records by course_id and course_name(from the Coursestable).

3. Calculates the Average GPA students in each group using the AVG() function.

The result of this query will display the course ID, course name, and average GPA

of students in each course.

9. Write a query to update a studentGPA.

To revise a student's GPA, you would first need to know the structure of your

database,particularly the name of the table that holds the student information and the names

of the columns for the student ID and GPA. Assuming the table name is "students" and the

columns are"student_id" and"gpa", you could write a query like this:

UPDATE

studentsSETgpa=ne

w_gpa

WHEREstudent_id =target_student_id;

8 | Page

Replace new_gpa with the updated GPA value (e.g., 3.5) and target_student_id with the ID

of the student whose GPA you desire to update (e.g., 12345). Your final query would look

like this:

UPDATE

studentsSETgpa=

3.5

WHEREstudent_id=12345;

Before running the query, make sure to replace the table and column names if they are

different in your database.

10. Write A query to update a course's credit hours.

To update a course's credit hours, you would need to know the structure of your

database,specifically the name of the table holding the course information and the names of

the columns for the course ID and credit hours. Assuming the table name is "courses" and

thecolumnsare"course_id"and"credit_hours", you could write a query like this:

UPDATE courses

SET credit_hours = new_credit_hours WHERE course_id =

target_course_id;

Replace new_credit_hours with the updated credit hours value (e.g., 4)

andtarget_course_id with the ID of the course whose credit hours you want to update

(e.g.,'CSCI101'). Your final query would look like this:

UPDATEcoursesSE

Tcredit_hours=4

WHERE course_id = 'CSCI101';

11. Writea query to delete a student from the student table.

DELETE FROM student

WHEREstudent_id=<student_id_to_delete>;

12. Write a query to drop the course registration table.

DROPTABLEcourse_registration;

13. Createatableforstoringstudentaddresses.

9 | Page

CREATE TABLE student_addresses(address_idSERIALPRIMARYKEY,

Student_id INT REFERENCES student (student_id),streetVARCHAR(250),

city VARCHAR(255),stateVARCHAR(255),

postal_code VARCHAR(255),countryVARCHAR(255)

);

14. Write SQLqueriestoinsertDataintothe student addressestable.

INSERT INTO student_addresses (student_id, street, city, state, postal_code,

country)VALUES(<student_id>, '<street>','<city>',

'<state>','<postal_code>','<country>');

15. Write aquerytoretrieveaspecificstudent'saddressbytheirstudentID.

SELECT*FROMStudent_addresses

WHEREStudent_id=<Student_id_to_search>;

16. Write aquerytodeleteastudent'saddressas ofthestudentaddressestable.

DELETEFROMstudent_addresses

WHEREStudent_id=1;--Replace1withthedesiredstudentID

17. Create a table for storing instructor's office hours.

CREATE TABLE instructor_office_hours(id SERIAL PRIMARYKEY,

instructor_id INT NOT NULL,day_of_week VARCHAR(15) NOT

NULL,start_timeTIMENOTNULL,

End_timeTIMENOTNULL

10 | Page

18. Write SQL queries add data into the instructor office hours table.

INSERT INTO instructor_office_hours (instructor_id, Day_of_week, start_time,

end_time) VALUES (1,'Monday','10:00:00', '11:00:00');

INSERT INTO instructor_office_hours (instructor_id, Day_of_week, start_time,

end_time)VALUES (2, 'Tuesday', '14:00:00', '16:00:00');

INSERT INTO instructor_office_hours (instructor_id, Day_of_week, start_time,

end_time)VALUES(1,'Thursday','10:00:00', '12:00:00');

19. Write a query to retrieve all instructor office hours.

SELECT*FROMinstructor_office_hours;

20. Writea query to retrieve a specific instructor's office hours their employeeID.

SELECT*FROMinstructor_office_hours

WHEREinstructor_id=1;--Replace1 with the desired instructor ID

21. Write A Query To Update An Instructor's Office Hours.

UPDATEinstructor_office_hours

SETStart_time= '11:00:00',end_time='13:00:00'

WHERE id=1;--Replace1 with thedesiredofficehours record ID

22. Write a query to delete an instructor's office hours from the instructor office

hours table.

DELETEFROM instructor_office_hours

WHERE id=1;--Replace1 with the desired office hours record ID

23. Create a A table for storing course prerequisites.

11 | Page

CREATE TABLE Course_prerequisites(id SERIAL PRIMARYKEY,

course_id INT NOT NULL, prerequisite_id INT NOT NULL

);

24. Consider a table named '\Employees' with the following columns:

employee_id,first_name, last_name, age, department, and salary. Write a ”SQL

query” to display the first name, last name, and salary of all employees working

within the 'Finance Department.

SELECT First_name ,last_name,

salaryFROMEmployees

WHERE

Department='Finance';

25. Consider a table named 'Students' by the follow columns: student_id,

first_name,last_name, age, grade, and course_id. Write a SQL query to compute the

average age of students grade 10.

SELECT AVG(age) AS average_age FROM Students

WHERE grade=10;

26. Consider two tables named 'Orders’ and 'Order_items'. The 'orders' table has the

columns order_id, , and order_date, customer_id. The 'order_items' table has the

column order_id, product_id, quantity, with price. Write a “SQL query” to find

the total revenue generated on a specific date (e.g., '2023-03-31').

SELECT SUM(quantity * price) AS total_revenue FROM orders

JOIN orders.order_id ON order_items = order_id.order_item WHERE order_date

='2023-03-31';

27. Consider a table name 'products' by the following columns: product_id,

product_name, category, and price. write down a SQL query to display the

three most expensive products in each category.

SELECT p1.product_id, p1.product_name, p1.category,

p1.price FROM productsp1

12 | Page

WHERE (SELECT COUNT(*)

FROM productsp2

WHERE p2.category= P1.category ANDp2.price> P1.price

) < 3

ORDERBY p1.category,p1.priceDESC;

28. Consider a table name 'customers' by the next columns:

customer_id,first_name, last_name, Email, and Phone. Write down a SQL

query to update the phone numbers of customers with the last name 'Smith' by

adding a '+1' prefix.

UPDATE customers

SET phone = CONCAT('+1', phone) WHERE last_name = 'Smith';

29. Consider a table name 'books' with the next columns: book_id, title,

author,genre, in addition to publication_year. Write down a SQL query to count

the number of books published in each genre after 2010.

SELECT genre, COUNT(*) AS book_count FROM books

WHERE publication_year> 2010 GROUPBYgenre;

30. Consider two tables name 'authors' and 'books'. The 'authors' table have the

columnsauthor_id, first_name, and last_name. The 'books' table has the columns

book_id,title, author_id, and publication_year. Write down a SQL query to display

the list of authors who have published at least three books.

“SELECT a.author_id, a.first_name, a.last_name, COUNT(b.book_id) AS

book_count FROM authors a

JOIN books b ON a.author_id = b.author_idGROUP BY a.author_id, a.first_name,

a.last_nameHAVINGCOUNT(b.book_id) >=3;”

31. ConsIder a table name 'inventory' by the following columns:

product_id,product_name, quantity, and price. Write down a “SQL query” to

display the total value of the inventory(quantity*price)for each product with a value

greaterthan1000.

SELECTproduct_id, product_name, quantity, price, (quantity*price) AS inventory_value

13 | Page

FROM inventory

WHERE (quantity*price)>1000;

32. Consider a table name 'events' with the following columns: event_id,

event_name,start_date, end_date, and venue. Write down a SQL query to display

the events scheduled to occur between '2023-04-02'and'2023-04-30',

sortedbystart_date.

SELECT event_id, event_name, start_date, end_date, venue FROM events

WHERE start_date BETWEEN '2023-04-02'AND'2023-04-30'

ORDERBY start_date;

33. Consider a table named 'users' with the following columns: user_Id, username,

email,and registration_dAte. Write a SQL query to delete all users who registered

more than two years ago(assuming the current date is '2023-03-31').

DELETE FROM users

WHERE registration_date<DATE_SUB ('2023-03-31',INTERVAL 2 YEAR);

34. Consider a table name 'sales’ with the following columns: sale_id,

product_id,sale_date, and quantity. Write down a “SQL query” to display the

total number of sales for every month in 2022.

“SELECT YEAR (sale_date) AS sale_y

Eear , MONTH(sale_date) AS sale_month, COUNT(*) AS sale_count

FROM sales

WHERE YEAR(sale_date) = 2022 GROUPBYsale_year,sale_month;”

35. Consider two tables named 'students' and 'enrollments'. The 'students' table has

thecolumns student_id, first_name, and last_name. The 'enrollments' table has the

columns enrollment_Id, student_id, course_id, and semester. Writedown a SQL

query to display the list of students who are not enrolled in a few courses for the

'Spring 2023 semester.

“SELECT s.student_id, s.first_name,

s.last_name FROM students

LEFT JOIN enrollments e ON s.student_id = e.student_id AND e.semester = 'Spring

2023 WHERE e.enrollment_idISNULL;”

36. Consider a table name 'orders' with the following columns: order_id,

customer_id,order_date, and total_amount. Write down a “SQL query” to find the

total revenue generated per month in 2022.

14 | Page

“SELECT YEAR(oRder_date) AS order_year, MONTH(oRder_date) AS

order_month,SUM(total_amount) AS monthly_revenue

FROMoRders

WHERE YEAR(order_date) = 2022 GROUPBY order_year, order_month;”

37. Consider a table name 'employees' by the following columns: employee_id,

first_name, last_name, hire_date, and salary. Write down a SQL query to display

the employees hired within the last 6 months(assuming the current date is'2023-03-

31').

“SELECT employee_id, first_name, last_name, hire_date, salary FROM employees

WHERE hire_date>DATE_SUB('2023-03-31', INTERVAL 6 MONTH);”

38. Consider a table named 'cities' with the following columns: city_id,

city_name,country, and population. Write down a SQL query to display the top 5

most populous cities in ascending order.

SELECT city_id, city_name, country, population FROM cities

ORDER BY population DESC LIMIT 5;

39. Consider a table name 'employees' with the following columns: employee_id,

first_name, last_name, department, and salary. Write down a SQL query to find

the employees with the highest salary in each department.

Step1:

First, we need to find the highest salary for each department. To do this, we use the

GROUP BY clause to group the records in the department and the MAX() function to get

the greatest salary in each group.

SELECT department, MAX(salary) AS highest_salary FROM employees

GROUP BY department;

Step2:

Now that we have the highest salary for each department, we need to join the result of

the previous query with the original 'employees' table to get the employee details.

SELECT e.employee_id, e.department, e.first_name, e.salary FROM employees

,e.last_name JOIN (

SELECT department, MAX (Salary) AShighest_Salary

15 | Page

FROM employees GROUP BY department

)ON e.department=d.department AND e.salary=d.highest_salary;

The inner query (subquery) calculates calculates the highest salary designed for each

department, and the outer query joins the 'employees' table with the result of the

subquery to get the employee details.

40. Consider two tables named 'students' and 'courses'. The 'students’ table has the

columns first_name, student_id, and last_name . The 'courses' table has the

columns course_id, course_name, with instructor. Write a SQL query to find the

students who have not taken any courses taught by a specific instructor

(e.g.,'JohnSmith').

Step 1:

Filter the 'courses' table to get the courses taught by the specific

instructor.SELECT course_id

FROM courses

WHERE instructor='JohnSmith';

Step2:

Join the 'students' table by the 'courses' table using a LEFT JOIN to get the list of

students who have taken courses taught by the specific instructor. Filter the result to

include only students who haven't taken any of the instructor's courses.

SELECT DISTINCT s.student_id, s.first_name, s.last_name FROM students

LEFT JOIN courses c ON s.course_id = c.course_id AND c.instructor = 'John

Smith' WHERE c.course_id IS NULL;

The LEFT JOIN ensures that all students are included in the result, even if they haven't

taken any courses taught by the specific instructor. The DISTINCT keyword is used to

remove duplicate entries in case a student is enrolled in multiple courses not taught by

the instructor.

41. Write a query to locate the courses offered in a specific semester.

SELECT*FROM

coursesWHERE

semester='Fall2023';

42. Write a query to find the instructor's teaching specific course.

16 | Page

“SELECT i.instructor_id ,i.instructor_name FROM instructors JOIN course_instructors.ci ON

i.instructor_id = ci.instructor_id WHERE ci.course_id = 'CS101' ;”

43. Write a query to locate the students by the highest GPA in a specific course.

SELECT s.student_id, s.student_name, s.gpa FROM students sJOINcourse_registrationscr ON

s.student_id = cr.student_id WHERE cr.course_id ='CS101'ANDs.gpa =(

SELECT MAX(gpa) FROM students st

JOIN course_registrationscrt ON st.student_id = crt.student_id WHERE crt.course_id =

'CS101'

);

44. Writea query to find courses by means of non registered students.

“SELECT c.course_id, c.course_name FROM courses

LEFT JOIN course_registrationscr ON c.course_id = cr.course_id WHERE cr.student_id IS

NULL;”

45. Writea Querytolocatethe top 4 students with the highest GPA.

SELECT id, name, GPAFROMstudentsORDER By GPA DESC LIMIT 4 ;

46. Write a query to find theTop 5 course with the maximum averageGPA.

“SELECT c.id, c.name, AVG(r.grade) as average_gpaFROMcourses c

JOiN registrations r ON c.id = r.course_idGROUPBYc.id,c.name

ORDER BY average_gpa DESC

LIMIT 5;”

17 | Page

47. Write a query to find theTop 5 instructors with the HighestaveragestudentGPA.

SELECT i.id, i.name, AVG(r.grade) as

average_gpaFROM instructors i

JOIN course_instructors ci ON i.id =

ci.instructor_idJOIN registrations r ON

ci.course_id = r.course_idGROUPBYi.id,i.name

ORDER BY average_gpa

DESC LIMIT 5;

48. Create a view to display the student ID, name, and total credit hours of the course

they are registered for.

CREATEVIEWstudent_credit_hoursAS

SELECT s.id as student_id, s.name as student_name, SUM(c.credit_hours)

astotal_credit_hours

FROMstudentss

JOIN registrations r ON s.id =

r.student_idJOIN courses c ON

r.course_id = c.idGROUPBYs.id,s.name;

49. Create a view to display the instructor ID, name, and total credit hours of the

courses they are teaching.

CREATE VIEWinstructor_credit_hoursAS

SELECT i.id as instructor_id, i.name as instructor_name, SUM(c.credit_hours)

astotal_credit_hours

FROM instructorsi

JOIN course_instructors ci ON i.id =

ci.instructor_idJOINcourses cONci.course_id= c.id

GROUPBYi.id,i.name;

18 | Page

50. Createastoredproceduretoenrollastudentinacourse.

CREATE PROCEDURE

EnrollStudent@StudentIDINT,

@CourseID

INTAS

BEGIN

INSERT INTO Enrollment (StudentID,

CourseID)VALUES(@StudentID,@CourseID)

;

END

;GO

51. Createastoreproceduretodropacourseused forastudent.

CREATE PROCEDURE

DropCourse@studentIDINT,

@courseID

INTAS

BEGIN

DELETEFROM Enrollment

WHERE StudentID = @StudentID AND courseID =

@courseID;END;

GO

52. Create a stored procedure to add a fresh course to the course table.

CREATE PROCEDURE AddCourse

@CourseID INT,

@CourseNameNVARCHAR(25

5),@CreditHoursINT

ASBE

GIN

19 | Page

INSERT INTO Courses (CourseID, CourseName,

CreditHours)VALUES(@CourseID,@CourseName,@CreditHours);

END;GO

53. Create a stored procedure to delete courses from the course table.

CREATE PROCEDURE DeleteCourse@courseID INT

ASBEGIN

DELETEFROMCourses

WHERE CourseID = @CourseID;END;

GO

54. Create a stored procedure to add an instructor to the instructor table.

CREATE PROCEDURE

AddInstructor@InstructorIDINT,@InstructorNameNVARCHAR(255),@OfficeHoursNV

ARCHAR(255)

ASBEGIN

INSERT INTO Instructors (InstructorID, InstructorName,

OfficeHours)VALUES(@InstructorID,@InstructorName,@OfficeHours);

END;GO

55. Create a stored procedure to delete instructors from the instructor table.

CREATE PROCEDURE DeleteInstructor

@InstructorID INTAS

BEGIN

DELETEFROMInstructors

WHERE InstructorID = @InstructorID;END;

GO

20 | Page

56. Createa stored procedure to revise astudent'sGPA.

CREATE PROCEDURE UpdateStudentGPA@StudentIDINT,

@NewGPADECIMAL(4, 2)AS

BEGIN

UPDATEStudents

SET GPA=@NewGPA

WHERE StudentID = @StudentID;END;

GO

57. Createastoreproceduretobring up to dateacourse'scredithours.

CREATE PROCEDURE UpdateCourseCreditHours@CourseID INT,

@NewCreditHours INTAS

BEGIN

UPDATECourses

SET CreditHours = @NewCreditHoursWHERECourseID=@CourseID;

21 | Page

END

;GO

58. Createastoredproceduretoupdateaninstructor'sofficehours.

CREATE PROCEDURE

UpdateInstructorOfficeHours@InstructorIDINT,

@NewOfficeHoursNVARCHAR(2

55)AS

BEGIN

UPDATEInstructors

SET OfficeHours =

@NewOfficeHoursWHERE

InstructorID = @InstructorID;END;

GO

59. Create a function to compute the average GPA of students in a specific course.

CREATE FUNCTION AvgGPAByCourse

(@CourseID INT)RETURNS DeCIMAL(4,2)

ASBE

GIN

RETURN (

SELECT AVG(GPA)

FROMStudents

JOIN EnrollMent ON Students.StudentID =

Enrollment.StudentIDWHEREEnrollMent.CoUrseID=@CoUrse

ID

);EN

D;G

O

22 | Page

60. Createafunctiontocomputethetotalcredithoursearnedbyaspecificstudent.

Assuming you have a table enrollments by columns student_id, course_id,

andcredit_hours, the function to calculate the total credit hours earned by a specific

students can be created as follows:

CREATE FUNCTION total_credit_hours_student(student_idInT) RETURNS INT

AS $$DECLARE

total_hours

INT;BEGIN

SELECT SUM(credit_hours)INTOtotal_hoursFROMenrollmentsWHEREstudent_id=

$1;

RETURN

total_hours;END;

$$LANGUAGEplpgsql;

61. Create a function to calculate the total credit hours taught by a specific instructor.

To calculate the whole credit hours taught by a specific instructor, you can create a

similar function. Assuming you have a table courses with columns instructor_id

andcredit_hours:

CREATE FUNCTION total_credit_hours_instructor(instrUctor_id INT) RETuRNS INT

AS $$DECLARE

TOTAl_hours

INT;BEiIN

SELECT SUM(credit_hours) INTO tOtal_hours FROM courses WHERE instructor_id

= $1;RETURNtotal_hours;

END;

$$LANGUAGEplpgsql;

62. Create a trigger to update the total credit hours earned by a student when they

enroll or drop a course.

Assuming you have a table students with columns id and total_credit_hours, create a

trigger to update the total credit hours earned by a student when they enroll or drop a

course:

23 | Page

CREATEORREPLACEFUNCTIONupdate_student_credit_hours()RETURNSTRIGGERAS

$$BE

GIN

IF(TG_oP='INSERT')THEN

UPDATE students SET total_credit_hours = total_credit_hours +

NEW.credit_hoursWHEREid=NEW.student_id;

ELSIF (TG_OP = 'DELETE')THEN

UPDATE students SET total_credit_hours = total_credit_hours -

OLD.credit_hoursWHEREid=OLD.student_id;

ENDIF;RET

URN

NULL;END;

$$LANGUAGEplpGsql;

CREATE TRIGGER

update_student_credit_hours_triggerAFTER INSERT

OR DELETE ONenrollments

FOR each ROW EXECUTEFUNCTIONupdate_student_credit_hours();

63. Create a trigger to update the total credit hours earned by a student when they

enroll or drop a course.

Assuming you have a table instructors with columns id and

total_credit_hours_taught,create a trigger to update the total credit hours taught by an

instructor when they areassignedorremovedfrom acourse:CREATEOR

REPLACEFUNCTION Update_instructor_credit_hours()RETURNS TRIGGER AS

$$BE

GIN

IF(TG_OP='INSERT')THEN

UPDATE instructors SET total_credit_hours_taught = total_credit_hours_taught

+NEW.credit_hoursWHERE id = NEW.instructor_id;

ELSIF (TG_OP = 'DELETE')THEN

UPDATE instructors SET total_credit_hours_taught = total_credit_hours_taught

-OLD.credit_hoursWHEREid=OLD.instructor_id;

24 | Page

ENDIF

;RETURN

 NULL;

END ;

$$LANGUAGEplpGsql;

CREATE TRIGGER

update_instructor_credit_hours_triggerAFTER INSERT

OR DELETE ONcourses

FOREACHROWEXECUTEFUNCTIONupdate_instructor_credit_hours();

64. Create a table for storing user login logs.

CREATE TABLE

user_login_logs(idSERIAl

PRIMARYKEY ,

user_idINTNOTNULL,

login_timestampTIMESTAMPNOTNULL

);

65. Write SQL queries to add data into the user login logs

table.INSERT INTO user_login_logs (user_id,

login_timestamp)VALUES (1, '2023-03-3110:00:00');

INSERT INTO user_login_logs (user_id,

login_timestamp)VALUES (2, '2023-03-3110:05:00');

INSERT INTO user_login_logs (user_id,

login_timestamp)VALUES (1, '2023-03-3114:00:00');

66. Writea query to retrieve a specific user's login logs BytheiruserID.

SELECT *FROMuser_login_logs

WHERE User_id=1;--Replace1withthedesireduserID

25 | Page

67. Writea querytodeleteaspecificuser'sloginlogsfromtheuserloginlogstable.

DELETEFROMuser_login_logs

WHERE user_id=1;--Replace1withthedesireduserID

68. Create An Index on the student table to improve performance.

CREATEINDEX idx_student_last_Name

ON student (last_name); -- Replace 'student' with your actual student table

and'last_name'withthedesiredcolumn

69. CreateanIndexonthecoursetableto improve query performance.

CREATE INDEXidx_course_name

ON course (name); -- Replace 'course' with your actual course table and 'name' with the

desired column

70. AnalyzetheperformanceofaspecificqueryusingtheOracleExplainPlanfeature.

To analyze the concert of a specific query, you can use the EXPLAIN PLAN

statement inOracle. Here is a case of how to use the EXPLAIN PLAN feature:

-- Replace the SELECT statement with your specific

queryEXPLAINPLAN FOR

SELECT *FROMuser_login_logs WHEREuser_id=1;

-- To view the output of the EXPLAIN PLAN, you can query the

PLAN_TABLE:SELECT*FROM TABLE(DBMS_XPLAN.DISPLAY());

71. Use SQL subqueries to find students who are registered for the same course as

a specific student.

SELECT DISTINCT s2.student_id,

s2.student_nameFROM course_registrationAS

cr1

JOIN course_registration AS cr2 ON cr1.Course_id =

cr2.course_idJOINstudent ASs2ONcr2.stuDent_id= s2.student_id

WHEREcr1.student_id=<specific_stuDent_id>ANDcr1.student_id!=s2.student_id;

26 | Page

72. Use SQL subqueries to find instructors who have taught the same course as a

specific instructor.

“SELECT DISTINCT i2.instructor_id,

i2.instructor_nameFROM courseAs c1

JOINcourseAS c2ONc1.Course_id=c2.course_id

JOINinstructorASi2ONc2.instructOr_Id = i2.instructor_id

WHERE Ec1.instructor_id=<specific_instructor_id>ANDc1.instructor_id!=i2.instructor_id;”

73. Write a query to implement pagination for a large result set, such as a list of

all students.

SELECT * FROM

studentORDER BY

student_id

LIMIT <page_size> OFFSET <offset>;

Replace <page_size> with the number of records per page and <offset> with the starting

record number forthepage (e.g.,(page_number - 1)*page_size).

74. Write a query to implement full-text search for student names or course titles.

--For

studentnamesSELECT*F

ROMstudent

WHEREto_tsvector('enGlish',student_name)@@to_tsquery('english','<search_query>');

--For

coursetitlesSELECT*F

ROMcourse

WHERE to_tsvector('english', course_title) @@ to_tsquery('english',

'<search_query>');Replace<search_query>with the text you want to search for.

75. Use SQL transactions to ensure data integrity when enrolling students in courses

or updating theirGPA.

-- Enrolling a student in a

courseBEGIN;

27 | Page

INSERT INTO Course_registration (student_id,

course_id)VALUES(<stuDent_id>,<course_id>);

UPDATEstudent

SET enrolled_courses = enrolled_courses +

1WHERE student_id =

<student_id>;COMMIT;

-- Updating a Student's

GPABEGIN;

UPDATEstudent

SET gpa=<new_gpa>

WHEREstudent_id=<student_id>;

-- Any other related updates should be placed here, e.g., updating class rank,

etc.COMMIT;

76. Optimize a slow-running query using indexes, subqueries, or other query

optimization techniques.

Here's an example of optimizing a slow-running query that finds students enrolled in a

precise course:

Original query:

“SELECT *

FROM student

WHERE Student_id

IN

(SELECTstudent_id

FROMcourse_registration

WHERECourse_id=<specific_course_id>

);”

Optimized Query Using JOIN:

“SELECT s.*

FROM StudentASs

28 | Page

JOIN course_registration AS cr ON s.student_id =

cr.student_idWHEREcr.course_id =<specific_course_id>;”

Additionally, you could create an index on course_registration(course_id)

andstudent(student_id)to speed up the join operation:

“CREATE INDEX idx_course_registration_course_id O N

Course_registration(course_id);

CREASTEINDEXidx_student_id ONstudent(student_id);”

77. UseSQL joins to recover a list of students and the course they are registered for.

“SELECT s.student_id, s.student_name, c.course_id,

c.course_titleFROM studentASs

JOIN course_registration AS cr ON s.student_id =

cr.student_idJOINcourseAS cONcr.course_id= c.course_id;”

78. UseSQLjoinstorecoverarecord ofinstructorsandthecoursetheyareteaching.

“SELECT i.instructor_id, i.instructor_name, c.course_id,

c.course_titleFROM instructor AS i

JOINcourseASc ONi.instructor_id= c.instructor_id;”

79. UseSQL joins to recover a list of courses and their prerequisites.

SELECT c1.course_id AS course_id, c1.course_title AS

course_title,c2.course_idASprerequisite_id,c2.course_titleASprerequisite_

title

FROMcourse A Sc1

JOIN course_prerequisite AS cp ON c1.course_id =

cp.course_idJOINcourse A S c2O Ncp.prerequisite_id=

c2.course_id;

80. Write down a SQL query to create a normalized schema for an online store,

including tables for customers, products, orders, and order items. Ensure each table

has appropriate primary and foreign keys.

“CREATE TABLE Customers (

customer_idINTPRIMARYKEYAUTO_INCREMENT,

29 | Page

first_name VARCHAR(250) NOT NULL,last_name VARCHAR(250) NOT

NULL,emailVARCHAR(250)UNIQUENOTNULL

);

CREATE TABLE Products (

Product_idINT PRIMARYK E YAUTO_INCREMENT,

product_name VARCHAR(255) NOT NULL,

PriceDECIMAL(10,2)NOTNULL,

stock_levelINTNOTNULL

);

CREATE TABLE Orders (

order_idINT PRIMARYKEY AUTO_INCREMENT,

customer_id INT NOT NULL,order_date DATE NOT NULL,total_priceDECIMAL(10

,2)NOTNULL,

FOREIGNKEY(customer_Id)REFERENCES Customers(customer_id)

);

CREATETABLEOrder_Items(

order_item_id INT PRIMARY KEY AUTO_INCREMENT,order_idINT NOTNULL,

product_id INT NOT NULL,quantityINTNOTNULL,

FOREIGN KEY (order_id) REFERENCES

Orders(order_Id),FOREiGNKEY(product_id)REFERENCESProducts(product_id),)”

81. Write down a “SQL query “ to create an index On the product name in the

"Products" table,assuming the product name column is called"product_name".

CREATE INDEXidx_product_nameONProducts(product_name);

82. Write a “SQL query” to find the top 3 Best-selling products in the online store,

based on the total quantity sold.

“SELECT p.product_id, p.product_name, SUM(oi.quantity) as

total_soldFROMProductsp

30 | Page

JOIN order_Itemsoi ON p.product_id =

oi.product_idGROUPByp.product_id,p.proDuct_name

ORDER BY total_sold DESCLIMIT 3;”

83. Write a “SQL query” to find the total revenue generated by the online store for a

given date range,using the"Orders"and "Order_Items"tables.

SELECT SUM(o.total_price) as total_revenueFROMOrderso

WHEREo.order_dateBETWEEN start_dateANDend_date;

84. Create a stored procedure to insert a new customer record into the "Customers' '

table,checking for duplicate email addresses and returning an appropriate error

message if duplicate is found.

DELIMITER//

CREATE PROCEDURE InsertCustomer(INp_first_nameVARCHAR(255),

IN

p_last_nameVARCHAR(255),INp_emailVARCHAR(255),OUTp_statusVARCHAR(255)

)BEGIN

DECLAREemail_existsINTDEFAULT0;

31 | Page

SELECT COUNT(*) INTO email_existsFROMCustomers

WHERE email=p_email;

IFemail_exists>0THEN

SET p_status = 'Error: Email address already exists.';ELSE

INSERT INTO Customers (First_name, last_name,

email)VALUES(p_First_name,p_last_name,p_email);

SET p_status = 'Success: Customer added.';ENDIF;

END//DELIMITER;

85. Create a stored procedure to update the stock level meant for a product in the

"Products"table,considering the stock level should not be less than zero.

DELIMITER//

CREATE PROCEDURE Update STOCK Level(INp_product_idINT,

INp_STOCK_level INT,

OUTp_statusVARCHAR(255)

)BEGIN

IFp_stock_level< 0THEN

SET p_status = 'Error: Stock level cannot be negative.';ELSE

UPDATEproducts

SET stock_level = p_stock_levelWHEREproduct_id=p_product_id;

SET p_status = 'Success: Stock level

updated.';ENDIF;

END//DELIMI

TER;

86. Write a SQL query to implement a transaction that inserts a new order and

its associated order items into the "Orders" and "Order_Items" tables,

ensuring data consistency.

BEGINTRANSACTION;

--InserttheneworderintotheOrderstable

INSERT INTO Orders (order_id, customer_id,

32 | Page

order_date)VALUES(NEW_ORDER_ID,CUSTOMER_ID,'Y

YYY-MM-DD');

-- Insert the associated order items into the Order_Items table

INSERT INTO Order_Items (order_id, product_id, quantity, price)

VALUES(NEW_ORDER_ID,PRODUCT_ID_1,QUANTITY_1,PR

ICE_1),

(NEW_ORDER_ID, PRODUCT_ID_2, QUANTITY_2,

PRICE_2),(NEW_ORDER_ID,PRODUCT_ID_3,QUANTI

TY_3,PRICE_3);

-- Check for errors and commit the transaction if no errors

occurredIF@@ERROR=0

COMMIT

TRANSACTION;ELSE

ROLL BACK TRANSACTION;

87. Write a SQL query to Create a view that displays the whole revenue generated by

each customer.

“CREATE VIEW Customer_RevenueAS

SELECT c.customer_id, c.customer_name, SUM(oi.price * oi.quantity) AS

total_revenue FROM Customersc

JOIN Order so ONc.Customer_id=o.customer_id

33 | Page

JOIN Order_ItemsoI ON o.order_id =

oi.order_idGROUPBYC.customer_id,c.customer_name;”

88. Implement a trigger that automatically calculates and updates the total

price of an order in the "Orders" table when a new record is inserted into

the "Order_Items"table.

“CREATE TRIGGER Update_Order_Total AFTER INSERT ON Order_Items

FOR EACH ROWBEGIN

UPDATEOrders

SET total_price = total_price + (NEW.quantity * NEW.price)WHERE

order_id=NEW.order_id;

END;”

89. Write a SQL query to create a schema for a many-to-many relationship

among students and courses, using a junction table for enrollments.

-- Create Students table “CREATE TABLE students (student_id INT

PRIMARY KEY,

student_nameVARCHAR(255)NOTNULL

);

-- Create Courses tableCREATE TABLE Courses

(course_idINTPRIMARYKEY,

course_name VARCHAR(255)NOTNULL

);

--CreateEnrollmentsjunction table

34 | Page

CREATE TABLE Enrollments (student_idINT,

course_Id INT,enrollment_dateDATE,

PRIMARYKEY(student_id, course_id),

FOREIGN KEY (Student_id) REFERENCES Students

(student_id),FOREIGNKEY(course_id)REFERENCES Courses (course_id)

);”

90. Write a SQL query to uncover the average grade of all students in a specific course,

using the "Students", "Courses", and"Enrollments"tables.

“SELECT AVG(Enrollments.grade) AS average_grade FROM Students

JOIN Enrollments ON Students.Student_id = Enrollments.student_id JOIN Courses ON

Enrollments.course_id = Courses.course_id WHERE Courses.course_name =

'SpecificCourseName';”

91. Write down a SQL query to identify clients who have placed more than 5 orders in

the online store,using the "Customers" and "Orders" tables.

“SELECT Customers.customer_id, Customers.customer_name FROM Customers

JOIN Orders ON Customers.customer_id = Orders.customer_idGROUP BY

Customers.customer_id, Customers.customer_name HAVING COUNT(Orders.order_id) >

5;

92. Write a SQL query to Find the products that have not been ordered in the last 30

days,using the "Products","Orders",and "OrderItems"tables.

“SELECT Products.product_id, Products.product_name FROM Products

LEFT JOIN Order_Items ON Products.Product_id =Order_Items.product_id

LEFT JOIN Orders ON Order_Items.order_id=Orders.order_id

WHERE Orders.order_date< CURRENT_DATE - INTERVAL '30 days' OR

Orders.order_id ISNULL

GROUP BY Products.product_id,Products.product_name;”

93. Implement a trigger that checks the stock point of a product before inserting a

new record into the "Order_Items'' table. If the stock level is insufficient, cancel the

insertion and return an error message.

“DELIMITER//

CREATE TRIGGER

35 | Page

check_stock_level BEFORE INSERT ON Order_Items FOR EACH ROW

BEGIN

DECLARE stock_level INT;SELECT stock INTO stock_level FROM Products

WHERE Products.ProdUct_id=NEW.prodUct_id;

IF stock_level<NEW.quantity THEN

SIGNAL SQLSTATE 45000'

SET MESSAGE_TEXT = 'Insufficient stock level.';ENDIF;

END;

//DELIMITER :”

94. Create a stored procedure to calculate and update the total price of an

order after adding,updating, or deleting an orderitem.

CREATE PROCEDURE Update Total Price(IN order_id INT)BEGIN

95. Write a SQL query to Create an index on the "Orders" table to optimize the

search for order placed within a specific date range.

CREATE INDEX idx_orders_order_date ON Orders (order_date);

96. Write a “SQL query” to find the total number of enrollments for each course,

sorted by the number of enrollments in descending order.

36 | Page

“SELECT Courses.course_Id, Courses.course_naMe,

COUNT(Enrollments.student_id) asenrollment_count

FROM Courses

JOIN Enrollment ON Courses.course_id = Enrollments.course_id

GROUP BYCourses.course_id,Courses.course_name

ORDER BY enrollment_count DESC;”

97. Create a view to display the number of products sold in each product

category,using the"Products" and "Order_Items"tables.

“CREATE VIEWproducts_sold_by_category AS

SELECT Products.category, COUNT(Order_Items.product_id)asproducts_sold

37 | Page

FROM Products

JOIN Order_Items ON Products.product_id = Order_Items.product_id GROUP BY

products.category;”

98. Implement a Foreign key constraint on the "Enrollments" table to ensure that a

record can only be added if the corresponding student and course IDs exist in the

"Students" and"Courses"tables.

“ALTER TABLE Enrollments

ADD FOREIGN KEY (student_id) REFERENCES

students(student_id),ADDFOREIGNKEY(course_id)

REFERENCE Scourses(course_id);”

99. Write a SQL query to identify the top three customers who have spent the most

money on top of the online store, based on the total price of their orders.

“SELECT Customers.customer_id, customers.customer_name, SUM(Orders.total_price)

astotal_spent

FROM Customers

JOIN Orders ON customers.customer_id = Orders.customer_idGROUP BY

customers.customer_id, Customers.customer_name ORDER BY Total_spent DESC

LIMIT 3;”

100. Write down a SQL query to find the students who have taken at least 1 course

from each department, using the "Students", "Courses", "Enrollments", and

"Departments" tables.Assume there is a "department_id" column in both the

"Courses" and "Departments"tables.

To find the students who have taken at least 1 course from each department, you can

usethefollowingSQLquery:

WITH Department Courses AS(

SELECT DISTINCT department_id, course_idFROM Courses

),

Student Courses AS(SELECT e.student_id, dc.department_id FROM Enrollments

38 | Page

JOIN CoursescONe.course_id =c.courSe_id

JOIN Department CoursesdcONc.course_id=dc.course_id),

Department CountsAS(

SELECT COUNT(*) AS department_count FROM Departments

),

StudentDepartmentCounts AS(

SELECT student_id, COUNT(DISTINCT department_id)

AS student_department_count FROM Student Courses

GROUPBY Student_id

)

SELECT s.student_id, s.name FROM Students s

JOIN Student Department Counts secONds.Student_id=sdc.student_id

JOIN Department Counts cONsdc.Student_department_count=dc.department_count;

